并查集
集合表示
如果有10台电脑{1,2,3,4,...,9,10},已知下列电脑之间实现了连接:1和2,2和4,3和5,4和7,5和8,6和9,6和10问:2和7,5和9之间是否可以连通?2和7是连通的,5和9不连通
集合运算
已知a、b两个元素均是所在集合的根结点,且分别位于数组分量3和2位置上,其parent值分别为-3,-2。问:将这两个集合按集合大小合并后,a和b的parent值分别是多少?-5,3
集合的定义与并查操作(已加入按秩归并方法):
#define MAXN 1000 /* 集合最大元素个数 */
typedef int ElementType; /* 默认元素可以用非负整数表示 */
typedef int SetName; /* 默认用根结点的下标作为集合名称 */
typedef ElementType SetType[MAXN]; /* 假设集合元素下标从0开始 */
void Union( SetType S, SetName Root1, SetName Root2 )
{ /* 这里默认Root1和Root2是不同集合的根结点 */
/* 保证小集合并入大集合 */
if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */
S[Root2] += S[Root1]; /* 集合1并入集合2 */
S[Root1] = Root2;
}
else { /* 如果集合1比较大 */
S[Root1] += S[Root2]; /* 集合2并入集合1 */
S[Root2] = Root1;
}
}
SetName Find( SetType S, ElementType X )
{ /* 默认集合元素全部初始化为-1 */
if ( S[X] < 0 ) /* 找到集合的根 */
return X;
else
return S[X] = Find( S, S[X] ); /* 路径压缩 */
}
并查集实例PTA 05-树8 File Transfer
We have a network of computers and a list of bi-directional connections. Each of these connections allows a file transfer from one computer to another. Is it possible to send a file from any computer on the network to any other?
Input Specification:
Each input file contains one test case. For each test case, the first line contains N (2≤N≤104), the total number of computers in a network. Each computer in the network is then represented by a positive integer between 1 and N. Then in the following lines, the input is given in the format:
I c1 c2
where I
stands for inputting a connection between c1
and c2
; or
C c1 c2
where C
stands for checking if it is possible to transfer files between c1
and c2
; or
S
where S
stands for stopping this case.
Output Specification:
For each C
case, print in one line the word "yes" or "no" if it is possible or impossible to transfer files between c1
and c2
, respectively. At the end of each case, print in one line "The network is connected." if there is a path between any pair of computers; or "There are k
components." where k
is the number of connected components in this network.
Sample Input 1:
5
C 3 2
I 3 2
C 1 5
I 4 5
I 2 4
C 3 5
S
Sample Output 1:
no
no
yes
There are 2 components.
Sample Input 2:
5
C 3 2
I 3 2
C 1 5
I 4 5
I 2 4
C 3 5
I 1 3
C 1 5
S
Sample Output 2:
no
no
yes
yes
The network is connected.
这里代码是伪递归形式的,会被编译器优化成循环形式。
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#define MAXN 10001 /* 集合最大元素个数 */
typedef int ElementType; /* 默认元素可以用非负整数表示 */
typedef int SetName; /* 默认用根结点的下标作为集合名称 */
typedef ElementType SetType[MAXN]; /* 假设集合元素下标从0开始 */
void Union( SetType S, SetName Root1, SetName Root2 )
{ /* 这里默认Root1和Root2是不同集合的根结点 */
/* 保证小集合并入大集合 */
if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */
S[Root2] += S[Root1]; /* 集合1并入集合2 */
S[Root1] = Root2;
}
else { /* 如果集合1比较大 */
S[Root1] += S[Root2]; /* 集合2并入集合1 */
S[Root2] = Root1;
}
}
SetName Find( SetType S, ElementType X )
{ /* 默认集合元素全部初始化为-1 */
if ( S[X] < 0 ) /* 找到集合的根 */
return X;
else
return S[X] = Find( S, S[X] ); /* 路径压缩 */
}
void Initialization(SetType S, int N)
{
for(int i=0; i<N; i++)
S[i] = -1;
}
void Input_connection(SetType S)
{
ElementType u,v;
SetName Root1, Root2;
scanf("%d %d\n",&u,&v);
Root1 = Find(S, u-1);
Root2 = Find(S, v-1);
if(Root1 != Root2)
Union(S, Root1, Root2);
}
void Check_connection(SetType S)
{
ElementType u,v;
SetName Root1,Root2;
scanf("%d %d\n",&u,&v);
Root1 = Find(S, u-1);
Root2 = Find(S, v-1);
if(Root1 == Root2)
printf("yes\n");
else
printf("no\n");
}
void Check_network(SetType S, int n)
{
int i,counter = 0;
for(i=0; i<n; i++)
{
if(S[i] < 0)
counter++;
}
if(counter == 1)
printf("The network is connected.\n");
else
printf("There are %d components.\n",counter);
}
int main()
{
int N;
scanf("%d",&N);
SetType S;
char in;
Initialization(S, N);
do
{
scanf("%c",&in);
switch(in)
{
case 'I':
Input_connection(S);
break;
case 'C':
Check_connection(S);
break;
case 'S':
Check_network(S, N);
break;
}
}while(in != 'S');
return 0;
}