文件系统基础

文件的概念

一个文件有哪些属性?

文件名:由创建文件的用户决定文件名,主要是为了方便用户找到文件,同一目录下不允许有重名文件

标识符:一个系统内的各文件标识符唯一,对用户来说毫无可读性,因此标识符只是操作系统用于区分各个文件的一种内部名称。

类型:指明文件的类型位置:文件存放的路径(让用户使用)、在外存中的地址(操作系统使用,对用户不可见)

大小:指明文件大小

创建时间、上次修改时间文件所有者信息

保护信息:对文件进行保护的访问控制信息

文件的逻辑结构

按文件是否有结构分类,可以分为无结构文件、有结构文件两种。

无结构文件:文件内部的数据就是一系列二进制流或字符流组成。又称“流式文件”。如:Windows操作系统中的.txt文件。

有结构文件:由一组相似的记录组成,又称“记录式文件”。每条记录又若干个数据项组成。如:数据库表文件。一般来说,每条记录有一个数据项可作为关键字。根据各条记录的长度(占用的存储空间)是否相等,又可分为定长记录和可变长记录两种。

有结构文件在逻辑上可分为三种:顺序文件、索引文件、索引顺序文件

目录结构

文件控制块

FCB的有序集合称为“文件目录”,一个FCB就是一个文件目录项

FCB中包含了文件的基本信息(文件名、物理地址、逻辑结构、物理结构等),存取控制信息(是否可读/可写、禁止访问的用户名单等),使用信息(如文件的建立时间、修改时间等)。

最重要,最基本的还是文件名、文件存放的物理地址。

FCB实现了文件名和文件之间的映射。使用户(用户程序)可以实现“按名存取

需要对目录进行哪些操作?

  • 搜索:当用户要使用一个文件时,系统要根据文件名搜索目录,找到该文件对应的目录项
  • 创建文件:创建一个新文件时,需要在其所属的目录中增加一个目录项
  • 删除文件:当删除一个文件时,需要在目录中删除相应的目录项
  • 显示目录:用户可以请求显示目录的内容,如显示该目录中的所有文件及相应属性
  • 修改目录:某些文件属性保存在目录中,因此这些属性变化时需要修改相应的目录项(如:文件重命名)

单级目录结构

早期操作系统并不支持多级目录,整个系统中只建立一张目录表,每个文件占一个目录项。

单级目录实现了“按名存取”,但是不允许文件重名。

在创建一个文件时,需要先检查目录表中有没有重名文件,确定不重名后才能允许建立文件,并将新文件对应的目录项插入目录表中。

显然,单级目录结构不适用于多用户操作系统。

二级目录结构

早期的多用户操作系统,采用两级目录结构。分为主文件目录(MFD,Master File Directory)和用户文件目录(UFD,UserFlie Directory)。

多级目录结构(树形目录结构)

例如,此时已经打开了“照片”的目录文件,也就是说,这张目录表已调入内存,那么可以把它设置为“当前目录”。当用户想要访问某个文件时,可以使用从当前目录出发的“相对路径”。

在Linux中,“.”表示当前目录,因此如果“照片”是当前目录,则"自拍jpg"的相对路径为:“./2015-08/自拍.jpg”。从当前路径出发,只需要查询内存中的“照片”目录表,即可知道"2015-08"目录表的存放位置,从外存调入该目录,即可知道“自拍jpg”存放的位置了。

可见,引入“当前目录”和“相对路径”后,磁盘I/O的次数减少了。这就提升了访问文件的效率。

用户(或用户进程)要访问某个文件时要用文件路径名标识文件,文件路径名是个字符串。各级目录之间用“/”隔开。从根目录出发的路径称为绝对路径。例如:自拍.jpg 的绝对路径是“/照片/2015-08/自拍.jpg”。

每次都从根目录开始查找,是很低效的。因此可以设置一个“当前目录”。例如,此时已经打开了“照片”的目录文件,也就是说,这张目录表已调入内存,那么可以把它设置为“当前目录”。当用户想要访问某个文件时,可以使用从当前目录出发的“相对路径”。

在 Linux 中,“.”表示当前目录,因此如果“照片”是当前目录,则"自拍jpg"的相对路径为:“./2015-08/自拍.jpg”。

树形目录结构可以很方便地对文件进行分类,层次结构清晰,也能够更有效地进行文件的管理和保护。但是,树形结构不便于实现文件的共享。为此,提出了“无环图目录结构”。

无环图目录结构

索引节点(FCB的改进)

当找到文件名对应的目录项时,才需要将索引结点调入内存,索引结点中记录了文件的各种信息,包括文件在外存中的存放位置,根据“存放位置”即可找到文件。

存放在外存中的索引结点称为“磁盘索引结点”,当索引结点放入内存后称为“内存索引结点”。

相比之下内存索引结点中需要增加一些信息,比如:文件是否被修改、此时有几个进程正在访问该文件等。

文件的物理结构/文件分配方式

操作系统需要对磁盘块进行哪些管理?

  • 对非空闲磁盘块的管理 (存放了文件数据的磁盘块):“文件的物理结构/文件分配方式”要探讨的问题
  • 对空闲磁盘块的管理:“文件存储空间管理”要探讨的问题

在内存管理中,进程的逻辑地址空间被分为一个一个页面

同样的,在外存管理中,为了方便对文件数据的管理,文件的逻辑地址空间也被分为了一个一个的文件“块”。

于是文件的逻辑地址也可以表示为(逻辑块号,块内地址)的形式。

操作系统为文件分配存储空间都是以块为单位的

用户通过逻辑地址来操作自己的文件,操作系统要负责实现从逻辑地址到物理地址的映射

连续分配

连续分配方式要求每个文件在磁盘上占有一组连续的块。

读取某个磁盘块时,需要移动磁头。访问的两个磁盘块相隔越远,移动磁头所需时间就越长。

结论:连续分配的文件在顺序读/写时速度最快

结论:物理上采用连续分配的文件不方便拓展。

结论:物理上采用连续分配,存储空间利用率低,会产生难以利用的磁盘碎片可以用紧凑来处理碎片,但是需要耗费很大的时间代价。

连续分配(总结)

连续分配方式要求每个文件在磁盘上占有一组连续的块。

优点:支持顺序访问和直接访问(即随机访问);连续分配的文件在顺序访问时速度最快

缺点:不方便文件拓展;存储空间利用率低,会产生磁盘碎片

链式分配

链接分配采取离散分配的方式,可以为文件分配离散的磁盘块。分为隐式链接和显式链接两种。

隐式链接一一除文件的最后一个盘块之外,每个盘块中都存有指向下一个盘块的指针。文件目录包括文件第一块的指针和最后一块的指针。

优点:很方便文件拓展,不会有碎片问题,外存利用率高。

缺点:只支持顺序访问,不支持随机访问,查找效率低,指向下一个盘块的指针也需要耗费少量的存储空间。

如何实现文件的逻辑块号到物理块号的转变?

用户给出要访问的逻辑块号i,操作系统找到该文件对应的目录项(FCB)...

从目录项中找到起始块号,若i>O,则查询内存中的文件分配表FAT,往后找到i号逻辑块对应的物理块号。逻辑块号转换成物理块号的过程不需要读磁盘操作。

结论:采用链式分配(显式链接)方式的文件,支持顺序访问,也支持随机访问(想访问i号逻辑块时,并不需要依次访问之前的0~i-1号逻辑块),由于块号转换的过程不需要访问磁盘,因此相比于隐式链接来说,访问速度快很多。

索引分配

如何实现文件的逻辑块号到物理块号的转换?

用户给出要访问的逻辑块号i,操作系统找到该文件对应的目录项(FCB)。

从目录项中可知索引表存放位置,将索引表从外存读入内存,并查找索引表即可只i号逻辑块在外存中的存放位置。

可见,索引分配方式可以支持随机访问。文件拓展也很容易实现(只需要给文件分配一个空闲块,并增加一个索引表项即可)但是索引表需要占用一定的存储空间。

①链接方案:如果索引表太大,一个索引块装不下,那么可以将多个索引块链接起来存放。

链接方案不支持直接访问。

逻辑结构 VS 物理结构

文件存储空间管理

空闲链表法

操作系统保存着链头、链尾指针。

如何分配:若某文件申请K个盘块,则从链头开始依次摘下K个盘块分配,并修改空闲链的链头指针。

如何回收:回收的盘块依次挂到链尾,并修改空闲链的链尾指针。

适用于离散分配的物理结构。为文件分配多个盘块时可能要重复多次操作

空闲链表法

操作系统保存着链头、链尾指针。

如何分配:若某文件申请K个盘块,则可以采用首次适应、最佳适应等算法,从链头开始检索,按照算法规则找到一个大小符合要求的空闲盘区,分配给文件。若没有合适的连续空闲块,也可以将不同盘区的盘块同时分配给一个文件,注意分配后可能要修改相应的链指针、盘区大小等数据。

如何回收:若回收区和某个空闲盘区相邻,则需要将回收区合并到空闲盘区中。若回收区没有和任何空闲区相邻,将回收区作为单独的一个空闲盘区挂到链尾。

离散分配、连续分配都适用。为一个文件分配多个盘块时效率更高

位示图:每个二进制位对应一个盘块。在本例中,“0”代表盘块空闲,“1”代表盘块已分配。

如何分配:若文件需要K个块,①顺序扫描位示图,找到K个相邻或不相邻的“0”;②根据字号、位号算出对应的盘块号,将相应盘块分配给文件;③将相应位设置为“1”。

如何回收:①根据回收的盘块号计算出对应的字号、位号;②将相应二进制位设为“0”

适用于离散分配和连续分配的情况。

文件的基本操作

文件共享

文件保护

口令保护

为文件设置一个“口令”(如:abc112233),用户请求访问该文件时必须提供“口令”。

口令一般存放在文件对应的FCB或索引结点中。用户访问文件前需要先输入“口令”,操作系统会将用户提供的口令与FCB中存储的口令进行对比,如果正确,则允许该用户访问文件

优点:保存口令的空间开销不多,验证口令的时间开销也很小。

缺点:正确的“口令”存放在系统内部,不够安全。

加密保护

访问控制