反转链表
206. Reverse Linked List
Description
Given the head
of a singly linked list, reverse the list, and return the reversed list.
Example 1:
Input: head = [1,2,3,4,5]
Output: [5,4,3,2,1]
Example 2:
Input: head = [1,2]
Output: [2,1]
Example 3:
Input: head = []
Output: []
Constraints:
- The number of nodes in the list is the range
[0, 5000]
. -5000 <= Node.val <= 5000
Follow up: A linked list can be reversed either iteratively or recursively. Could you implement both?
思路
双指针
迭代
递归
C++ 解法
递归
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* reverseList(ListNode* head) {
if(head == NULL || head->next == NULL)
return head;
ListNode* last = reverseList(head->next);
head->next->next = head;
head->next = NULL;
return last;
}
};
Java 解法
迭代
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode reverseList(ListNode head) {
ListNode pre = null;
ListNode cur = head;
while(cur != null){
ListNode temp = cur.next;
cur.next = pre;
pre = cur;
cur = temp;
}
return pre;
}
}
Python3 解法
迭代
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
pre = None
cur = head
while cur != None:
temp = cur.next
cur.next = pre
pre = cur
cur = temp
return pre
递归
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
if head == None or head.next == None:
return head
last = self.reverseList(head.next)
head.next.next = head
head.next = None
return last
92. Reverse Linked List II
Description
Given the head of a singly linked list and two integers left and right where left <= right, reverse the nodes of the list from position left to position right, and return the reversed list.
Example 1:
Input: head = [1,2,3,4,5], left = 2, right = 4
Output: [1,4,3,2,5]
Example 2:
Input: head = [5], left = 1, right = 1
Output: [5]
Constraints:
The number of nodes in the list is n.
- 1 <= n <= 500
- -500 <= Node.val <= 500
- 1 <= left <= right <= n
Follow up: Could you do it in one pass?
思路
链表的操作问题,一般而言面试(机试)的时候不允许我们修改节点的值,而只能修改节点的指向操作。
思路通常都不难,写对链表问题的技巧是:一定要先想清楚思路,并且必要的时候在草稿纸上画图,理清「穿针引线」的先后步骤,然后再编码。
方法一:穿针引线
我们以下图中黄色区域的链表反转为例。
使用「206. 反转链表」的解法,反转 left 到 right 部分以后,再拼接起来。我们还需要记录 left 的前一个节点,和 right 的后一个节点。如图所示:
算法步骤:
第 1 步:先将待反转的区域反转; 第 2 步:把 pre 的 next 指针指向反转以后的链表头节点,把反转以后的链表的尾节点的 next 指针指向 succ。
说明:编码细节我们不在题解中介绍了,请见下方代码。思路想明白以后,编码不是一件很难的事情。这里要提醒大家的是,链接什么时候切断,什么时候补上去,先后顺序一定要想清楚,如果想不清楚,可以在纸上模拟,让思路清晰。
复杂度分析
时间复杂度:O(N),其中 N 是链表总节点数。最坏情况下,需要遍历整个链表。
空间复杂度:O(1)。只使用到常数个变量。
方法二:一次遍历「穿针引线」反转链表(头插法)
方法一的缺点是:如果 left 和 right 的区域很大,恰好是链表的头节点和尾节点时,找到 left 和 right 需要遍历一次,反转它们之间的链表还需要遍历一次,虽然总的时间复杂度为 O(N),但遍历了链表 2 次,可不可以只遍历一次呢?答案是可以的。我们依然画图进行说明。
我们依然以方法一的示例为例进行说明。
整体思想是:在需要反转的区间里,每遍历到一个节点,让这个新节点来到反转部分的起始位置。下面的图展示了整个流程。
下面我们具体解释如何实现。使用三个指针变量 pre、curr、next 来记录反转的过程中需要的变量,它们的意义如下:
curr:指向待反转区域的第一个节点 left; next:永远指向 curr 的下一个节点,循环过程中,curr 变化以后 next 会变化; pre:永远指向待反转区域的第一个节点 left 的前一个节点,在循环过程中不变。 第 1 步,我们使用 ①、②、③ 标注「穿针引线」的步骤。
操作步骤:
先将 curr 的下一个节点记录为 next; 执行操作 ①:把 curr 的下一个节点指向 next 的下一个节点; 执行操作 ②:把 next 的下一个节点指向 pre 的下一个节点; 执行操作 ③:把 pre 的下一个节点指向 next。 第 1 步完成以后「拉直」的效果如下:
第 2 步,同理。同样需要注意 「穿针引线」操作的先后顺序。
第 2 步完成以后「拉直」的效果如下:
第 3 步,同理。
第 3 步完成以后「拉直」的效果如下:
复杂度分析:
时间复杂度:O(N),其中 N 是链表总节点数。最多只遍历了链表一次,就完成了反转。
空间复杂度:O(1)。只使用到常数个变量。
作者:力扣官方题解 链接:https://leetcode.cn/problems/reverse-linked-list-ii/solutions/634701/fan-zhuan-lian-biao-ii-by-leetcode-solut-teyq/ 来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
C++ 解法
方法一:穿针引线
class Solution {
private:
void reverseLinkedList(ListNode *head) {
// 也可以使用递归反转一个链表
ListNode *pre = nullptr;
ListNode *cur = head;
while (cur != nullptr) {
ListNode *next = cur->next;
cur->next = pre;
pre = cur;
cur = next;
}
}
public:
ListNode *reverseBetween(ListNode *head, int left, int right) {
// 因为头节点有可能发生变化,使用虚拟头节点可以避免复杂的分类讨论
ListNode *dummyNode = new ListNode(-1);
dummyNode->next = head;
ListNode *pre = dummyNode;
// 第 1 步:从虚拟头节点走 left - 1 步,来到 left 节点的前一个节点
// 建议写在 for 循环里,语义清晰
for (int i = 0; i < left - 1; i++) {
pre = pre->next;
}
// 第 2 步:从 pre 再走 right - left + 1 步,来到 right 节点
ListNode *rightNode = pre;
for (int i = 0; i < right - left + 1; i++) {
rightNode = rightNode->next;
}
// 第 3 步:切断出一个子链表(截取链表)
ListNode *leftNode = pre->next;
ListNode *curr = rightNode->next;
// 注意:切断链接
pre->next = nullptr;
rightNode->next = nullptr;
// 第 4 步:同第 206 题,反转链表的子区间
reverseLinkedList(leftNode);
// 第 5 步:接回到原来的链表中
pre->next = rightNode;
leftNode->next = curr;
return dummyNode->next;
}
};
方法二:一次遍历「穿针引线」反转链表(头插法)
class Solution {
public:
ListNode *reverseBetween(ListNode *head, int left, int right) {
// 设置 dummyNode 是这一类问题的一般做法
ListNode *dummyNode = new ListNode(-1);
dummyNode->next = head;
ListNode *pre = dummyNode;
for (int i = 0; i < left - 1; i++) {
pre = pre->next;
}
ListNode *cur = pre->next;
ListNode *next;
for (int i = 0; i < right - left; i++) {
next = cur->next;
cur->next = next->next;
next->next = pre->next;
pre->next = next;
}
return dummyNode->next;
}
};
Java 解法
方法一:穿针引线
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public void reverseLinkedList(ListNode head) {
ListNode pre = null;
ListNode cur = head;
while(cur != null){
ListNode temp = cur.next;
cur.next = pre;
pre = cur;
cur = temp;
}
}
public ListNode reverseBetween(ListNode head, int left, int right) {
ListNode dummyHead = new ListNode(-1);
dummyHead.next = head;
ListNode pre = dummyHead;
for(int i = 0; i < left - 1; i++){
pre = pre.next;
}
ListNode rightNode = pre;
for(int i = 0; i < right - left + 1; i++){
rightNode = rightNode.next;
}
ListNode leftNode = pre.next;
ListNode succ = rightNode.next;
rightNode.next = null;
pre.next = null;
reverseLinkedList(leftNode);
pre.next = rightNode;
leftNode.next = succ;
return dummyHead.next;
}
}